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Since its inception, numerical climate modeling has evolved along with available
computer power. Limitations in computer power quickly led to distinct types of
models, with relatively simple models capable of long integrations, versus complex
models suitable for short-duration detailed snapshots. Recognizing these computing
limitations, strategies to combine and enhance knowledge from the different model
types were conceived, and Schneider and Dickinson (1974) were early proponents of
interactive “hierarchies” of models. In that framework, numerical climate models
of different complexities, ranging from energy balance models (EBMs) for long-
term simulations, through zonal statistical-dynamic models and nowadays, Earth
models of intermediate complexity (EMICs), to general circulation (or global cli-
mate) models (GCMs) for short-term weather details, are used in combination
with each other. For instance, the GCM is used to determine key sensitivities (to
orbital perturbations, for example), and then the EBM is tuned to have the same
sensitivities. Knowledge and experience at each level of the hierarchy is applied
interactively at other levels. Climate-model hierarchies have also been discussed by
Henderson-Sellers and McGuffie (1987), Claussen et al. (2002) and Bartlein and
Hostetler (2004), with Claussen et al. (2002) distinguishing between integration of
components vs. detail of description, and proposing the term “spectrum” to avoid
any suggestion that one hierarchical level is better than another (Fig. 1).

This paper briefly surveys how these ideas have found form over the last several
decades, in the area of coupled ice sheet–climate modeling. To some extent the
original concept of hierarchies has been realized, but mostly it has been adapted
in different ways than originally envisioned, driven by the need to address the very
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Fig. 1 a Climate-modeling pyramid, adapted from Henderson-Sellers and McGuffie (1987). b Spec-
trum of climate models, from Claussen et al. (2002)

different temporal and spatial scales of synoptic meteorology (days, ∼103 km) and
ice sheets (103 to 105 years, 10’s km near their margins; Saltzman 1984, 1990).
Techniques addressing the time-scale mismatch are described first, followed by a
shorter discussion of spatial downscaling methods. The last section summarizes other
types of hierarchical interactions and future directions.

1 Multiple time scales

Since the early studies of causes of the ice ages in the nineteenth and early twentieth
centuries, a tight connection between ice cover and climate was realized, and the
need to involve meteorologic forcing by orbital perturbations (Adhémar, Croll,
Milankovitch, described in Imbrie and Imbrie 1979). As data and theories became
more refined in the late 20th century, the need to represent climate with more robust
models emerged. However, the mismatch between “fast” weather/climate variations
and much slower ice-sheet variations is a fundamental problem for numerical
modeling; on the one hand, there is a need to accurately simulate weather over an
ice sheet to provide its annual surface mass balance, but doing so straightforwardly
with full GCMs driving ice sheet models over million-year time scales would take
prohibitively long even on today’s computers.

Nevertheless, long-term simulations are needed to address many ice-age ques-
tions. Continental-scale ice sheets typically vary on time scales of 104 years or more,
and the fastest large-scale fluctuations such as the final collapse before interglacials
still take several 1,000’s of years. These fluctuations occur repeatedly throughout
ice ages of 106 to 107 years extent, such as Neoproterozoic Snowball Earth events
(Hoffman and Shrag 2000), sudden growth of major Antarctic ice and subsequent
oscillations in the Cenozoic, ∼34 Ma to the present (Zachos et al. 2006, 2008), and
Quaternary Northern Hemispheric glacial/interglacial cycles of the last ∼3 Myear
(Imbrie et al. 1993).

Progress in understanding these events requires the ability to drive prognostic
models of the long-term components (ice sheets, sediment and bedrock, deep oceans,
biogeochemical carbon cycles) continuously for O(104 to 107) years. Since the 1970s,
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numerical ice sheet models have been developed that are capable of simulating the
long-term evolution of kilometers-thick ice cover in three spatial dimensions on
regional or continental scales (e.g., Andrews and Mahaffy 1976; Jenssen 1977; Budd
and Smith 1979; Oerlemans 1982; Huybrechts 1990; Fastook and Prentice 1994;
Greve 1997; Ritz et al. 1997; Verbitsky and Saltzman 1997; Bueler and Brown 2009;
Rutt et al. 2009). These models use scaled (approximate) equations of the slow flow
of ice deforming under its own weight, and solve for the changing ice thickness and
internal ice temperatures on a regular grid, accounting for ice advection, surface snow
accumulation minus summer melt, freezing or melting at the ice base, and vertical
depression or rebound of the bedrock below the ice. The horizontal grid size in these
models is typically 10 to 50 km, with ∼10 or more vertical layers to keep track of
internal temperatures.

Given forcing fields of surface mass balance and sub-ice shelf melting, it is
quite feasible to run 3-D ice sheet models over continental domains through 104

to 107 years, typically taking a few days to weeks of wall-clock time on modern
computers. The main impediment to long-term runs is the provision of the forcing
fields: net annual mass balance over the ice sheet surface, and rates of oceanic sub-
ice-shelf melt, as these vary through the run due to ice-sheet extent and elevations,
orbital variations, atmospheric CO2, sea level and other forcing. At a minimum two
climate fields are needed for the surface budget: seasonal cycles of air temperature
and precipitation. Other atmospheric fields such as wind speed and cloudiness can
enter into boundary-layer treatments, but their long-term variations tend not to
be as important (Pollard and PMIP Participating Groups 2000). The modeling of
ocean circulation below ice shelves and sub-ice-shelf melting is challenging and in
early stages of development (Beckmann and Goosse 2003; Dinniman et al. 2007;
Holland et al. 2008a), and is not discussed here, but could be amenable to some
of the temporal methods described below. In the rest of this section, four different
approaches are described that provide air temperatures and precipitation over long
time scales, roughly in the order they appeared in the literature since the 1970s.

1.1 Energy balance models

The Earth’s climate can be crudely approximated as horizontal diffusion of heat,
transporting net radiative input from the warm tropics to the cold polar regions, with
the transport depending only on the horizontal gradient of a single-level tempera-
ture. Ice extent is included implicitly, by increasing solar reflectivity where tempera-
tures are below some value (0 to −5◦C).The resulting one-equation Energy Balance
Models (EBMs, otherwise known as Simple Climate Models, e.g., Budyko 1969;
Sellers 1969; North 1975; cf. Eriksson 1968) are simple enough to be run for millions
of years.

In the 1970s, climate models of this kind were coupled with explicit ice-sheet
models and applied to the Quaternary ice ages. An even simpler variant is to
represent climate by a prescribed snowfall-minus-melt pattern versus height and
latitude (Weertman 1976), but the results are very similar if a seasonal EBM is
used with ice melt dependent on the EBM’s summer temperature (Pollard 1978).
In this way, 1-D to 3-D Northern Hemispheric ice-sheet models were driven for 105

to 106 years though the Quaternary, with the climate component forced primarily by
orbital perturbations and sometimes a long gradual cooling representing a presumed
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decline in CO2 (e.g., Oerlemans 1980; Sergin 1980; Birchfield et al. 1982; Pollard
1982, 1983; Hyde and Peltier 1987; Neeman et al. 1988; DeBlonde and Peltier 1993;
Mudelsee and Schulz 1997; Tarasov and Peltier 1997, 1999).

More recently, the EBM–ice sheet genre has been applied to earlier glaciations
of the Phanerozoic and Precambrian (Hyde et al. 1999, 2000, 2006; Crowley et al.
2001), and to the Cenozoic with climate box-models or inversions (Langebroek et al.
2009; de Boer et al. 2010). An “anomaly” method was introduced, in which only the
EBM dif ferences from the modern simulated climate are used, and superimposed on
modern observed climatology (e.g., Tarasov and Peltier 1997, 1999, for Quaternary
cycles). In this method, it is hoped that climate model biases remain the same as for
modern, and so cancel to yield more accurate paleoclimate results.

Even using the anomaly method, Energy Balance Models with their simple
diffusive heat transport can only crudely capture the largest-scale variations in air
temperatures, and offer no information on precipitation changes, or only a little
with diffusive moisture-latent heat extensions (Chu and Ledley 1995; Bendtsen
2002; Pollard and Kasting 2005). Although these models have provided important
insights and successfully simulated basic ∼20 and 40 kyear fluctuations in response
to orbital forcing, they leave important questions unanswered, such as the causes of
the 100,000 year cycle, Mid-Pleistocene Transition, and rapid initiation of ice sheets
at the end of interglacials. Some of the shortcomings might be due to the omission of
other long term processes and components (sediment, deep ocean variations, carbon
cycling), but they could also be due to oversimplified climate forcing. To test the
latter possibility, ice sheet models need to be coupled with more comprehensive
climate GCMs or EMICs.

1.2 Basic asynchronous with GCMs and EMICs

For most researchers, the longest full-GCM integrations that are practical for
individual experiments are hundreds to several thousand years (Kiehl and Shields
2005; Kahana and Valdes 2009; Liu et al. 2009). For O(106)-year ice-age timescales,
continuous GCM integrations through the entire time span are currently infeasible,
and GCM applications have been limited to (1) snapshots of individual times, and
(2) sub-samples of climate states used creatively to drive the ice sheet model through
long periods.

Since the 1980s, many GCM snapshots have been used to deduce mass balance
on prescribed North American, Eurasian and Antarctic ice sheets at specific times,
mainly ice inception at the end of the last interglacial ∼116 ka, the Last Glacial
Maximum ∼21 ka, and the present to next few hundred years. As well as testing net
mass balance, these studies have quantified important forcing and feedback factors
such as orbital perturbations, atmospheric pCO2, biosphere–atmosphere and ocean–
atmosphere interactions.

The problem of Northern Hemispheric ice-sheet initiation at the end of the
last interglacial is amenable to just one climate snapshot, looking at areas with
net annual snow accumulation and/or driving nascent ice sheets with an invariant
climate, and has received considerable attention (e.g., Royer et al. 1983; Rind et al.
1989; Syktus et al. 1994; Dong and Valdes 1995; DeNoblet et al. 1996; Gallimore
and Kutzbach 1996; Pollard and Thompson 1997a; Vettoretti and Peltier 2004).
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Many GCM snapshots have also been performed for the Last Glacial Maximum
(LGM), looking at the effects of the ice sheets on climate and taking advantage
of abundant proxy climate data and reliable ice-sheet reconstructions (e.g., Gates
1976a, b; Manabe and Broccoli 1985; Hall et al. 1996; Fabre et al. 1997; Pollard and
Thompson 1997b; Broccoli 2000; Kageyama and Valdes 2000; Hewitt et al. 2003;
Kim et al. 2003, 2008; Braconnot et al. 2007). Some of these studies compute the
mass balance over the Northern Hemispheric ice sheets, sometimes using the same
anomaly method with respect to modern climate as mentioned above for EBMs,
and/or interpolating to the finer ice-sheet grids to account for the mismatch in spatial
scales as described below (e.g., Charbit et al. 2002, 2007; Zweck and Huybrechts
2005). A few studies have simulated times during the last deglaciation between the
LGM and the early Holocene (e.g., Kutzbach and Guetter 1986; Mitchell et al. 1988;
Kutzbach et al. 1998; Carlson et al 2009). Many GCM simulations of modern and
future greenhouse climate have been performed, and some GCMs have been used
to drive the Greenland and Antarctic ice sheets over the next hundreds to few
thousands of years (Huybrechts et al. 2004; Alley et al. 2005; Ridley et al. 2005;
Vizcaino et al. 2008).

Deeper-time applications with ice-sheet models driven by one or a few GCM
climate solutions include the Cenozoic (DeConto et al. 2007, 2008), Ordovician
(Herrmann et al. 2004), Permo-Carboniferous (Horton et al. 2007) and Neoprotero-
zoic Snowball Earth (Baum and Crowley 2001; Donnadieu et al. 2003; Pollard and
Kasting 2004).

Since the late 1990s, a few groups have made use of GCMs in longer-term ice-
age simulations, using a basic asynchronous method. The ice-sheet model is run
continuously, but the GCM is run only a few decades at a time, at several-thousand
year intervals using the current orbit and ice sheet size, to provide the mass balance
forcing over the ice sheets. The most recently computed mass balance is used to drive
the ice sheet model through the next several-thousand-year asynchronous period.
Each snapshot requires a few decades of GCM integration to spin up the upper ocean
and to average out interannual variability (Pollard et al. 1990). This technique was
used by Charbit et al. (2002) to simulate the last Northern Hemispheric deglaciation
since 21 ka, and by Horton and Poulsen (2009) in Permo-Carboniferous ice-age
experiments. However, the computational expense of the GCM integrations has
limited this technique to O(104 to 105) year intervals. Another kind of scheme with
accelerated orbital variations was used by Jackson and Broccoli (2003) to simulate
Northern Hemispheric mass balance in a GCM for the past 165,000 years, but is only
applicable for models with no long-term prognostic components, and not for coupling
with ice-sheet models.

GCMs with deep-ocean components are needed to test hypotheses concerning
interactions with thermohaline circulation and deep-ocean carbon storage (e.g.,
Imbrie et al. 1992; Toggweiler and Lea 2010). However, this presents a complication
for the asynchronous method, because deep-ocean-adjustment time scales are a few
thousand years, intermediate between those of the near-surface climate and the ice
sheets. Spinning up the deep ocean to equilibrium at each GCM synchronous phase
would greatly increase the CPU time required, and may not be realistic. Running the
deep ocean using asynchronous and/or acceleration techniques (e.g., Hewitt et al.
2003; Kim et al. 2003) may be feasible, but with more frequent atmospheric updates
than for the ice sheets (c.f., Lunt et al. 2006; Timm and Timmermann 2007).
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Recently, EMICs (Earth models of intermediate complexity) have been used
in basic asynchronous or fully synchronous mode, allowing longer coupled ice-
sheet integrations than are possible with GCMs. The atmospheric components in
EMICs range from EBMs, statistical-dynamical (zonally averaged eddy) or quasi-
geostrophic models to very coarse-resolution GCMs, and are coupled in some cases
to relatively sophisticated ocean and other component models (Claussen et al. 2002).
Many such studies have been applied to the Quaternary with runs ranging from
∼104 to ∼106 years, focusing on glacial inception (e.g., Wang and Mysak 2002;
Kageyama et al. 2004; Calov et al. 2005, 2009), millennial-scale interactions between
ocean thermohaline circulation and ice sheets (e.g., Schmittner et al. 2002; with
meltwater experiments intercompared in Rahmstorf et al. 2005), all or part of the
last ∼100 kyear glacial cycle (Gallee et al. 1992; Calov et al. 2002; Charbit et al. 2005;
Philippon et al. 2006; Ganopolski et al. 2010), and the last 3 Myear (Berger et al.
1999). They have also been applied to the future (Loutre and Berger 2000; Berger
and Loutre 2002; Swingedouw et al. 2008), and deeper-time ice ages (e.g., Donnadieu
et al. 2004). However, it is unclear whether the atmospheric dynamics of EMICs are
always sufficient for ice-age problems. The representations of atmospheric dynamics
and precipitation in some of the simpler EMICs are based empirically on modern
climatology, and their skill is likely to decay once they are applied to different
boundary conditions, especially over the flanks of past continental ice sheets.

1.3 GCM lookup table

An alternative to the basic asynchronous-GCM method in long-term ice-age experi-
ments is the use of a lookup-table of stored GCM climate solutions. In a preparatory
step before long ice-sheet integrations, a collection of GCM snapshots is assembled,
forming a look-up table of climates with specified external conditions and ice sizes
that span the space of all possible states expected during the long-term runs. Then at
any point in a long-term ice sheet run, current temperature and precipitation fields
are interpolated appropriately from the appropriate GCM lookup-table members.

The lookup table can consist of just two extreme climate members, often modern
and Last Glacial Maximum, that are weighted together in proportion to an empirical
“glacial index” such as Greenland ice-core δ18O over the last ∼120 kyears, to drive
Northern Hemispheric ice sheets (e.g., Marshall and Clarke 1999a, 2002; Rodgers
et al. 2004; Zweck and Huybrechts 2005; Charbit et al. 2007). This is a useful way
of investigating processes and testing ice-sheet models, but has the drawback of
imposing the Greenland ice-core fluctuations (millennial, orbital and 100,000 yr)
directly on the ice-sheet results, so is not ideal for investigating fundamental causes
of these variations.

An extension of this method is to build a multi-dimensional matrix of GCM
snapshots. Given that (1) there are a limited number of degrees of freedom in the
important long-term determinants of climate (orbit, ice-sheet size, and atmospheric
CO2 level), and (2) each determinant is more or less one-dimensional (summer
insolation at mid latitudes for orbits, total ice volume for ice-sheet configuration),
then a matrix of generic GCM simulations can be assembled with orbits ranging over
hot–medium–cold summers, with prescribed ice sheets ranging from none through
intermediate to maximum sizes, and with several levels of CO2. At any point in a
long-term ice-sheet simulation, the climate can be interpolated from members of this
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matrix based on the current orbit, overall ice-sheet volume and CO2 level. A prelimi-
nary version of this method was used by DeConto and Pollard (2003) and Pollard and
DeConto (2005) to simulate major growth of Cenozoic Antarctic ice at the Eocene–
Oligocene boundary ∼34 Ma. The full matrix method is currently being applied to
Cenozoic Antarctica using a 3 × 3 × 3 matrix with three orbital configurations, three
prescribed ice sheet sizes, and three CO2 levels (Wilson et al. 2009).

However, practical limits on the number of GCM matrix members introduce prob-
lems for this method, because orbital configurations and ice-sheet configurations
are not really one-dimensional, and need many more than three cases each to fully
describe their effects on climate. For instance, the pattern of upslope intensification
of precipitation on ice-sheet flanks cannot simply be interpolated from those of two
GCM solutions with larger and smaller ice-sheet sizes. Other drawbacks are that (1)
other long-term determinants of climate may be important, such as ocean gateway
openings, and (2) feedbacks such as meltwater caps and shutdowns of the North
Atlantic thermohaline circulation are not readily captured. These drawbacks may
be ameliorated by using matrices with more dimensions and elements, but then the
number of GCM simulations required may approach or exceed that required by the
simpler basic asynchronous method.

1.4 Climate parameterization

Another technique, used from the first long-term ice sheet studies, is simply parame-
terizing climate over ice sheets. This can be as simple as a zonally symmetric snowfall-
minus-snowmelt pattern versus height and latitude, as mentioned in Section 1.1. With
two horizontal dimensions, this approach has been limited mostly to Plio-Pleistocene
and future Antarctica, with East Antarctic ice sheet (EAIS) configurations similar
to present. Modern precipitation and temperature are either taken from climatologic
datasets, or parameterized simply in terms of geographic variables. For past times,
the modern temperature is perturbed simply in proportion to geologic time series
reflecting regional climate, such as Vostok ice core δD or deep-sea-core δ18O records,
plus a lapse-rate correction for elevation changes and a Clausius-Clapeyron relation
for precipitation shifts (Huybrechts 1998, 2002; Ritz et al. 2001; Pollard and DeConto
2009). Future projections using this method include Huybrechts and Oerlemans
(1990) and Huybrechts et al. (1991), but have been superseded in recent years by
GCMs and EMICs (Section 1.2).

The simple parameterizations of modern Antarctic temperature and precipitation
are based on regression analyses of modern Antarctic climatology, which relate
temperature and precipitation over the EAIS to surface elevation, latitude, surface
slope, distance to coast, etc. (Musynski and Birchfield 1985; Fortuin and Oerlemans
1990; Giovinetto et al. 1990). Basic univariate or bivariate regression works quite
well for modern EAIS, in part because the ice approximates a single dome centered
near the South Pole, and the dependent and independent variables are more or less
zonally symmetry. But for earlier Cenozoic ice sheet configurations with non-zonal
smaller ice sheets or multiple ice caps, more sophisticated methods would be needed,
based possibly on multivariate regression or artificial neural nets (Reusch et al. 2005)
and trained by discrete GCM/RCM snapshots of past times. A first step towards this
approach in principle was taken by Abe-Ouchi et al. (2007), who forced a Laurentide
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ice-sheet model through the last 120 kyears with climate parameterizations adjusted
beforehand according to a few discrete GCM snapshots.

2 Multiple spatial scales

2.1 Interpolation from coarse GCM and EMIC grids

The techniques described in the previous section address the temporal mismatch
between climate and ice sheets. Another problem in all applications using coarse-
grid climate models is the mismatch in spatial scales. Horizontal grid sizes in GCMs
and EMICs are typically several hundred km, and are inadequate to resolve the steep
topography around ice-sheet margins that are important in determining ablation.
Hence, many studies use straightforward interpolation techniques to derive the mass
balance on a much finer-scale ice-sheet model grid.

The first step is to horizontally interpolate the GCM temperature and precipi-
tation fields to the ice-sheet grid, often using simple bilinear interpolation. Simple
vertical corrections to air temperature are then applied, to correct for the difference
between the GCM-interpolated topography and the actual ice surface elevation,
assuming a constant lapse rate (e.g., Thompson and Pollard 1997; Fabre et al.
1998; although it is not clear what this lapse rate should be; see also Greuell et al.
1997). In some cases, a similar vertical correction to precipitation is also applied
(elevation-desert effect). If only the monthly means of GCM temperature and other
meteorologic variables are saved, then the non-linear effects of diurnal cycles and
synoptic variability on melt can be imposed in the calculation of mass balance (see
below; Marshall et al. 2004; Zweck and Huybrechts 2005).

Statistical hypsometric corrections to net mass balance for nascent ice caps have
been proposed, that account for small-scale topographic variability not even resolved
by the ice-sheet grid. This allows for extra melting in deep valleys vs. accumulation
on mountain plateaus, but has been used in relatively few long-term studies to date
(Walland and Simmonds 1996; Marshall and Clarke 1999b; cf. Kotlarski et al. 2010).

Precipitation is less amenable to simple topographic corrections than air temper-
ature, because it can be affected by forced orographic uplift and descent, resulting
for instance in enhanced snowfall on the windward flanks of ice sheets. Air-parcel
schemes are available that capture these effects given large-scale incoming winds,
temperature, humidity and finer-scale topography (Sanberg and Oerlemans 1983;
Fortuin and Oerlemans 1990; Leung and Ghan 1998), but they or simpler versions
have been used in only a few ice-sheet studies (Hulton et al. 2002; Calov et al. 2005;
van den Berg et al. 2008).

The two main methods used in calculating net annual mass balance at each
ice-sheet grid point from seasonal temperature and precipitation are the empirical
positive degree days (PDD) parameterization (e.g., Braithwaite 1981; Marshall et al.
2004; Hock 1999 including radiation), and the more physically based surface energy
balance model (SEBM; e.g., van de Wal and Oerlemans 1994; Pollard and PMIP
Participating Groups 2000; Anslow et al. 2008). Debate continues on the relative
merits of these two methods (van de Wal 1996; Bougamont et al. 2007). If not
included in the mass-balance model, allowance can be made for partial retention
of meltwater by refreezing in the underlying firn, which significantly modifies the
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net surface balance (Pfeffer et al. 1991; Thompson and Pollard 1997; Jannssens
and Huybrechts 2000; Marshall et al. 2004) and can produce a surprising variety
of stratified sequences in nature (Shumskii 1964; Paterson 1994). Refreezing is an
example of ice-sheet-specific surface physics at the interface between climate and
ice sheet models; another example that has not been included in dynamical ice-
sheet models to date is the formation and drainage of supraglacial lakes observed
on Greenland (Luthje et al. 2006; Box and Ski 2007; Das et al. 2008; Sundai et al.
2009), but such processes are beyond the scope of this paper.

2.2 Regional climate models, and stretched-grid GCMs

Some ice-age problems may require not just smooth interpolation from GCM grids,
but explicit modeling of dynamic meteorology over the ice sheets, for instance
upslope precipitation and downslope katabatic winds on steep ice-sheet margins. To
achieve this, GCM simulations can be enhanced by the use of atmospheric regional
climate models (RCMs) on limited domains over a particular ice sheet, driven at their
lateral boundaries by GCM meteorology. Several groups have applied RCMs over
modern Antarctica and Greenland (e.g., Hines et al. 1997; Bailey and Lynch 2000;
Fettweis et al. 2005; van den Broeke et al. 2006; Ettema et al. 2009). Others have
used RCMs to investigate details of the mass balance over Northern Hemispheric ice
sheets at LGM (Bromwich et al. 2004, 2005) and other times, including the effects of
proglacial lakes (Hostetler et al. 2000).

Alternatively, a single GCM can be used with stretched-grid capability, i.e., with a
region of finer grid spacing over the area of interest. This technique has been applied
to the Eurasian Ice Sheet and proglacial lakes early in the last glacial-interglacial
cycle, using the LMDZ GCM (Krinner et al. 2004; Peyaud et al. 2007; see also
Colleoni et al. 2009).

In principle, all of the temporal methods described in Section 1 for using GCMs
in long-term ice-sheet experiments can be augmented by embedded RCM simu-
lations, by performing one RCM run for each GCM snapshot. This has not yet
been attempted, probably due to the computational expense of the RCM (which is
comparable to GCMs, given that multiple years of RCM integration would be needed
for each snapshot to average out interannual variability).

3 Discussion

In summary, substantial progress has been made since the 1970s in coupled ice sheet–
climate modeling techniques, especially in

1. temporal techniques to address the mismatch between time scales (days to years
for meteorology and climate, 104 to 106 years for ice sheets), and

2. spatial techniques to address the mismatch in model grid resolutions (100’s km
for global climate models, 10’s of km for ice-sheet ablation zones).

One aspect of long-term coupled ice sheet–climate simulations that is sometimes
overlooked is the need to achieve the correct ice-sheet mass balance not just for one
time or interval, but for multiple stages of an ice-age cycle. The interpolation schemes
and PDD or SEBM models connecting the GCM climate with ice-sheet mass balance
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have uncertain parameters that can be tuned to achieve a desired average mass
balance for a particular ice sheet at a particular time (for instance, the Laurentide
at LGM). If no such tuning is done, there is wide scatter in whole-ice-sheet mass
balances predicted by different GCMs, even though their seasonal climates differ by
only a few ◦C (due to the strong sensitivity of summer melt to air temperatures in
ablation zones; Pollard and PMIP Participating Groups 2000). Thus the sign and rate
of ice-sheet change can be readily adjusted to a desired value for one particular time,
or for a limited unidirectional interval such as the last deglaciation. A much greater
challenge is to achieve the right signs and rates of ice-sheet growth and decay through
several or all stages of a 100,000 year glacial-interglacial cycle.

The climate and ice-sheet models developed since the 1970s have huge ranges in
complexity, and there has been some “vertical” interaction between hierarchical lev-
els (Schneider and Dickinson 1974), mostly for climate models alone. For instance,
atmospheric GCM results have been compared and interpreted using single-column
radiative–convective models (Henderson-Sellers and McGuffie 1987), EBM ice-age
climate sensitivity (Hyde et al. 1989), and conceptual vegetation feedbacks (Brovkin
et al. 1998). There have also been some hierarchical studies for ocean models alone
(Hirschi and Stocker 2002; Dijkstra and Weijer 2003; cf. Schneider and Thompson
1981).

In the ice sheet–climate arena, hierarchical interactions have mainly been between
ice flowline models (with 1 horizontal dimension) and analogous behavior in 3-D
models. Lessons learned from 1-D flowline models about Snowball-Earth transitions
(Budyko 1969; Sellers 1969; North 1975), Small Ice Cap Instability (SICI, due to
albedo feedback; North 1984, Lee and North 1995), Small Ice Sheet Instability
and hysteresis (SISI, due to height-mass-balance feedback; Weertman 1961, 1964;
Abe-Ouchi and Blatter 1993; Oerlemans 2002), and both SICI and SISI (MacAyeal
1979), helped to interpret tipping points in long-term 3-D model simulations of past
and future Greenland and Antarctica (Huybrechts 1993; Crowley and Yip 1994;
Crowley and Baum 1995; Cuffey and Marshall 2000; Toniazzo et al. 2004; Pollard
and DeConto 2005; Vizcaino et al. 2008) and Neoproterozic Earth (Donnadieu et al.
2003, 2004; Poulsen 2003; Pollard and Kasting 2004).

Other examples for coupled ice-climate modeling are few. For instance, 0-D
conceptual models have explored long-term interactions between global ice volume,
temperature and/or carbon dioxide (Saltzman and Verbitsky 1993; Paillard 1995;
Parrenin and Paillard 2003), but interactions with 3-D modeling have been sparse,
probably due to the gulf in complexity and the difficulty in matching the 0-D model
terms with 3-D model processes (although explicit physical processes are identified in
Paillard and Parrenin 2004). Similarly, studies using 0-D stochastic resonance models
(Benzi et al. 1981; Matteucci 1989) and fundamental analysis of degrees of freedom
and free vs. forced variability (Vautard and Ghil 1989; Yiou et al. 1994) have seen
little expression in 3-D modeling to date. On the other hand, recent theories and sim-
ple models that consider seasonal and interhemispheric aspects of orbital insolation
variations and the consequences for ice-sheet cycles (Raymo et al. 2006; Huybers and
Denton 2008; Huybers and Tziperman 2008; Huybers 2009) translate more readily
to 3-D modeling, and testing them with 3-D ice sheet–climate models will be more
straightforward.

Instead of “vertical” interactions in the hierarchical pyramid, much effort in
recent years has been directed along the “integration” axis of Claussen et al. (2002),
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combining ice sheet–climate models with other long-term components important to
ice-sheet evolution, like the evolution of GCMs and EMICs towards comprehensive
Earth systems models. These components and processes, with very incomplete
modeling references, include:

• Ice stream/shelf flow, grounding-line migration, higher-order flow equations
(Weertman 1974; Hughes 1981; MacAyeal 1989; MacAyeal et al. 1996; Hubbard
2000; Pattyn 2002; Bennett 2003 (review); Hindmarsh 2004, 2006, 2009; Payne
et al. 2004, 2007; Dupont and Alley 2005; Vieli and Payne 2005; Pollard and
DeConto 2007, 2009; Schoof 2007; Bueler and Brown 2009; Hughes 2009;
Joughin et al. 2009; Nick et al. 2009)

• Basal hydrology, aquifers, effect on basal stress (Flowers and Clarke 2002;
Johnson and Fastook 2002; Parizek and Alley 2004; Clarke 2005 (review);
Carlson et al. 2007; Creyts and Schoof (2009)

• Oceanic circulation under ice shelves, oceanic melting/freezing at their base,
meltwater/sea-ice feedbacks (Nicholls 1997; Dinniman et al. 2007; Holland et al.
2008a, b; Swingedouw et al. 2008; Thoma et al. 2008; Vizcaino et al. 2008; Walker
et al. 2009; Little et al. 2010)

• Ice-shelf and tidewater calving (van der Veen 1996; Doake et al. 1998; Kenneally
and Hughes 2002; Benn et al. 2007 (review); Alley et al. 2008; Scambos et al.
2009; Parizek et al. 2010)

• Supraglacial lakes and hydrofracture (Luthje et al. 2006; Box and Ski 2007; Das
et al. 2008; Krawczynski et al. 2009; Sundai et al. 2009)

• Subglacial lakes, outburst floods: physical models (Shoemaker 1991; Clarke et al.
2004; Pattyn et al. 2004; Alley et al. 2006; Evatt et al. 2006; Pattyn 2008; Carter
et al. 2009)

• Marine bathymetric landforms, interaction with grounding-line advance and
retreat (Alley 1991; Anderson 1999; Dahlgren et al. 2002; Alley et al. 2007; Nick
et al. 2007)

• Tidal effects on ice streams, stick-slip motion (Bindschadler et al. 2003; Winberry
et al. 2009)

• Deformable sediment and till, long-term distribution, effect on basal stress
(MacAyeal 1992; Boulton 1996; Alley et al. 1997; Clark and Pollard 1998;
Licciardi et al. 1998; Tulaczyk et al. 2000, 2001; Kamb 2001; Bougamont and
Tulaczyk 2003; Pollard and DeConto 2007; Hildes et al. 2004)

• Supraglacial debris, stagnation (Vacco et al. 2010)
• Aeolian dust, effects on and of ice sheets (Peltier and Marshall 1995; Overpeck

et al. 1996; Mahowald et al. 1999; Krinner et al. 2006; Sugden et al. 2009;
Ganopolski et al. 2010)

• Proglacial lakes (Andrews 1973; Pollard 1982; Marshall and Clarke 1999a;
Tarasov and Peltier 2005; Peyaud et al. 2007)

• Water isotopic ratios within the ice (Clarke and Marshall 2002; Clarke et al. 2005;
Lhomme et al. 2005; Sima et al. 2006)

• Bedrock deformation (Le Meur and Huybrechts 1996; Peltier 2004; Tarasov and
Peltier 2004; Lambeck et al. 2006)

• Terrrestrial landforms, erosion, landscape evolution (Hindmarsh 1999; Alley
et al. 2003; Tomkin 2003; Anderson et al. 2006; Kite and Hindmarsh 2007;
Hooke and Fastook 2007; Hindmarsh and Stokes 2008; Jamieson and Sugden
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2008; Jamieson et al. 2008; Kessler et al. 2008; Boulton et al. 2009; Sugden 2009
(review); Vacco et al. 2009; Stokes and Tarasov 2010)

These modeling studies provide a rich framework to embed ice-sheet models more
realistically into their surrounding environment. The first five to seven on the list
are considered to be particularly important for possible fast drawdown through
Greenland and West Antarctic ice streams in future decades to centuries, and may
be coming into play sooner than was expected a few years ago (e.g., Rignot and
Kanagaratnam 2006; Bell 2008; Holland et al. 2008b; Rignot 2008; Vaughan 2008;
Pritchard et al. 2009). There is an urgent need to develop more realistic and reliable
models of each of them, and much current work in ice sheet–climate modeling is
directed to that end.
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